Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease.

نویسندگان

  • C J Stam
  • W de Haan
  • A Daffertshofer
  • B F Jones
  • I Manshanden
  • A M van Cappellen van Walsum
  • T Montez
  • J P A Verbunt
  • J C de Munck
  • B W van Dijk
  • H W Berendse
  • P Scheltens
چکیده

In this study we examined changes in the large-scale structure of resting-state brain networks in patients with Alzheimer's disease compared with non-demented controls, using concepts from graph theory. Magneto-encephalograms (MEG) were recorded in 18 Alzheimer's disease patients and 18 non-demented control subjects in a no-task, eyes-closed condition. For the main frequency bands, synchronization between all pairs of MEG channels was assessed using a phase lag index (PLI, a synchronization measure insensitive to volume conduction). PLI-weighted connectivity networks were calculated, and characterized by a mean clustering coefficient and path length. Alzheimer's disease patients showed a decrease of mean PLI in the lower alpha and beta band. In the lower alpha band, the clustering coefficient and path length were both decreased in Alzheimer's disease patients. Network changes in the lower alpha band were better explained by a 'Targeted Attack' model than by a 'Random Failure' model. Thus, Alzheimer's disease patients display a loss of resting-state functional connectivity in lower alpha and beta bands even when a measure insensitive to volume conduction effects is used. Moreover, the large-scale structure of lower alpha band functional networks in Alzheimer's disease is more random. The modelling results suggest that highly connected neural network 'hubs' may be especially at risk in Alzheimer's disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data

Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...

متن کامل

Scopolamine effects on functional brain connectivity: a pharmacological model of Alzheimer’s disease

Scopolamine administration may be considered as a psychopharmacological model of Alzheimer's disease (AD). Here, we studied a group of healthy elderly under scopolamine to test whether it elicits similar changes in brain connectivity as those observed in AD, thereby verifying a possible model of AD impairment. We did it by testing healthy elderly subjects in two experimental conditions: glycopy...

متن کامل

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

Small-world networks and functional connectivity in Alzheimer's disease.

We investigated whether functional brain networks are abnormally organized in Alzheimer's disease (AD). To this end, graph theoretical analysis was applied to matrices of functional connectivity of beta band-filtered electroencephalography (EEG) channels, in 15 Alzheimer patients and 13 control subjects. Correlations between all pairwise combinations of EEG channels were determined with the syn...

متن کامل

Computer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity

Background: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain net...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 132 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2009